Creeping solitons of the complex Ginzburg–Landau equation with a low-dimensional dynamical system model

نویسندگان

  • Wonkeun Chang
  • Adrian Ankiewicz
  • Nail Akhmediev
چکیده

We study creeping solitons of the complex Ginzburg–Landau equation (CGLE) using numerical simulations and analyze them with a lowdimensional model using the method of moments. We find the regions of existence of creeping solitons in the parameter space of the CGLE. We also provide a comparison with exact results obtained using numerical simulations. Crown Copyright © 2006 Published by Elsevier B.V. All rights reserved. PACS: 04.30.Nk; 05.45.Yv; 42.65.Sf; 42.65.Tg

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation.

Finite-dimensional dynamical models for solitons of the cubic-quintic complex Ginzburg-Landau equation (CGLE) are derived. The models describe the evolution of the pulse parameters, such as the maximum amplitude, pulse width, and chirp. A clear correspondence between attractors of the finite-dimensional dynamical systems and localized waves of the continuous dissipative system is demonstrated. ...

متن کامل

Stable Stationary Solitons of the One-Dimensional Modified Complex Ginzburg-Landau Equation

We report on the existence of a new family of stable stationary solitons of the one-dimensional modified complex Ginzburg-Landau equation. By applying the paraxial ray approximation, we obtain the relation between the width and the peak amplitude of the stationary soliton in terms of the model parameters. We verify the analytical results by direct numerical simulations and show the stability of...

متن کامل

Pulsating, creeping, and erupting solitons in dissipative systems.

We present three novel pulsating solutions of the cubic-quintic complex Ginzburg-Landau equation. They describe some complicated pulsating behavior of solitons in dissipative systems. We study their main features and the regions of parameter space where they exist.

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007